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One of the extreme challenges in biology is to ameliorate the understanding of the mechanisms which emphasize metabolic
enzyme deficiency (MED) and how these pretend to have influence on human health. However, it has been manifested that MED
could be either inherited as inborn error of metabolism (IEM) or acquired, which carries a high risk of interrupted biochemical
reactions. Enzyme deficiency results in accumulation of toxic compounds that may disrupt normal organ functions and cause
failure in producing crucial biological compounds and other intermediates. The MED related disorders cover widespread clinical
presentations and can involve almost any organ system. To sum up the causal factors of almost all the MED-associated disorders,
we decided to embark on a less traveled but nonetheless relevant direction, by focusing our attention on associated gene family
products, regulation of their expression, genetic mutation, and mutation types. In addition, the review also outlines the clinical
presentations as well as diagnostic and therapeutic approaches.

1. Introduction

Understanding of metabolism and energy flow through cells
has recently gained considerable interest [1]. Inborn error of
metabolism (IEM) is a group of disorders characterized by
a single gene defect, which blocks some vital steps in the
normal metabolic pathway ensuing in deposition of substrate
or insufficiency of the product for normal organ functions
[2]. Diagnosis is of foremost choice not only for treatment
and prognosis but also for genetic counseling [3]. Enzyme
deficiency is thought to be genetically inherited almost always
in a recessive fashion, as it is mainly the result of “loss-
of-function” mutations [4]. This can be inherited either as
autosomal recessive (both of the parents do not have disorder
but each of them carries faulty gene and delivers it to the
child) or as X-linked recessive (only the mother carries the
affected gene on the X chromosome and conveys it to the
child) [5].

The inheritance of the majority of metabolic disorders is
rare [6] and the age of onset is extremely variable; however,
IEMs afflict mostly the paediatric population [2]. Early
detection of IEM correlates with significant reduction in
associated disabilities and deaths [6]. Geneticmutation is also
responsible for enzyme defect that regulates enzyme protein
interaction during transportation and binding of cofactors.
As a result, there is a modification in cellular chemistry either
by diminution of essential component or by accumulation of
toxic substances [4].

Treatment approaches for metabolic disorders are based
on symptomatic therapy which may include (a) modification
of metabolism process through restriction of attachment of
precursor with enzymes; [4] (b) provocation and stabilization
of residual enzyme activity using cofactors or vitamins; (c)
blocking the production of toxic metabolites using detoxify-
ing agents; [7] (d) replacement therapy to supply exogenous
functional enzymes; (e) endogenous production of enzymes
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Figure 1: Interlinking between various metabolic pathways (gluconeogenesis, Krebs cycle, urea cycle, and pentose phosphate) and various
enzymes responsible for metabolism.

through organ transplantation; (f) gene therapy to replace
defective gene [4]; (g) avoidance of catabolism at all stages of
treatment. Nonetheless, the nutrition therapy is considered as
an integral part for the treatment of IEM. Few parameters are
essential for assessment of IEMwhich include nutrient intake,
growth rate, and laboratory values monitoring [7, 8].

Hitherto, despite the appearance of quite a few excellent
reviews in the field of IEM of the literature, no review has
focussed on summarizing the real correlation of human
metabolic enzyme deficiency (MED) with inborn error of
metabolism (IEM), particularly in the sense of genetic
mutation. The aim of this review is, therefore, to provide
the most advanced information about the key enzymes
critically involved in diverse well-knownmetabolic pathways
like gluconeogenesis, Krebs cycle, urea cycle, and pentose
phosphate (PPP) pathway (Figure 1). The emphasis here is
given to how genetic mutation or altered gene expression
affectsMED-associated disorders. Table 1 represents the sum-
marized form of metabolic enzymes deficiency disorders and
genetic mutations.

2. Metabolic Enzymes Deficiency:
Cause and Complications

2.1. Glucose-6-phosphatase (G6Pase) Deficiency. G6Pase
helps in the formation of glucose-6-phosphate from glucose
in the lumen of endoplasmic reticulum (ER) [9, 10]. Herein,
the enzyme is a part of themulticomponent system, including
several integral membrane proteins, G6Pase catalytic subunit
(G6PC), a regulatory Ca2+ binding protein, and glucose-
6-phosphatase translocase (G6PT) [11]. G6Pase activity is
restricted to the various gluconeogenic tissues like liver [12],
kidney [13], small intestine [14], and 𝛽-cells of the endocrine
pancreas [9].

G6Pase enzyme is encoded by G6PC1, G6PC2, and
G6PC3 genes which are responsible for metabolic disor-
ders. G6PC1 is expressed in the liver, kidney, and small
intestine, whereas G6PC2 is expressed in the pancreas and
G6PC3 is expressed ubiquitously in the human body [15, 16].
G6PC1 and G6PC3 are located on the 17q21 chromosome
and G6PC2 is on the 2q31 chromosome. The cytosolic
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glucose-6-phosphate is transported to ER through SLC37A4
encoded gene [17, 18]. Deficiency of G6Pase activity in liver,
kidney, and intestinal mucosa with excessive accumulation
of glycogen in these organs leads to glycogen storage disease
(GSD) type 1 (Von Gierke’s disease). The latter is consid-
ered as acute metabolic disorder preferably characterized by
hypoglycemia. There are two main types of glycogen storage
diseases: the first is due to a defect in G6PC, called GSD type
1a, and the second one is due to the defect in G6PT, called
GSD type 1b [19, 20].

GSD-1a patients are clinically diagnosed with prompt
induced hypoglycemia and hyperlactacidemia in the neona-
tal period. Protruded abdomen due to pronounced hep-
atomegaly is the first symptomdeveloped around 3months of
age. Moreover, the other biological hallmarks are hyperlipi-
demia, hyperuricaemia, round doll-like face, developmen-
tal delay, and late onset of puberty [20–22]. The clinical
signs are chronic acidosis and hypertriglyceridemia which
led to the development of osteopenia and enlarged kid-
neys. Long term complications may be the hepatocellular
adenomas, renal complications, hyperuricaemia, and severe
hypertriglyceridemia which may cause risk of pancreati-
tis and pulmonary hypertension [23]. In GSD-1b patients
along with these symptoms, patients are also diagnosed
with neutropenia, which is responsible for development of
Crohn’s disease [21, 24]. In the recent studies, the antibacterial
flagellin antibodies (anti-CBir1) detection in GSD-1b patients
is another indication of Crohn’s disease and this antibody
level increased during disease state. In GSD-1b patients,
splenomegaly is more common along with hepatomegaly,
which is rarely found in GSD-1a patients [20, 25].

Previously, liver biopsy was the main diagnosis for the
detection of G6Pase disorder. Recent advances in molecular
biology involveDNAbased diagnostic tests and genes cloning
and G6Pase mutation database helps in diagnosis. Hitherto,
more than 80 separate mutated genes are identified for
G6Pase gene family, which are directly or indirectly responsi-
ble for G6Pase activity.These includemissense (E110Q, D38V,
P178S, W236R, R295C, and L345R), nonsense (Q347X and
R170X), insertion/deletion (822delC and 813insG), and codon
deletion (DF327) mutations, which are capable of reducing
the G6Pase activity [19].

Naturally occurring dog and transgenic mice models
are used for the study of GSD-1a whereas transgenic mice
models are for GSD-1b [10, 26]. The transgenic mouse model
shows all the symptoms of human GSD-1a, that is, hypo-
glycemia, hepatomegaly, nephromegaly, growth retardation,
hyperlipidemia, mild lactic acidemia, and hyperuricemia [10,
26]. Crossbreeding of Beagle and Maltese (with Met121Ile
mutation) showedmutation of G6PC gene with symptoms of
GSD-1a [26, 27].These animalmodels would serve as a useful
tool for the understanding of the pathophysiological condi-
tions and therapeutic approaches of GSD-1a deficiency [26].
Gene therapy related to adenoviral and adeno-associated
virus vectors is another important therapeutic approach for
G6Pase-𝛼 [28, 29]. Moreover, measurement of granulocyte
colony-stimulating factor (GCSF) is an important parameter
for GSD-1b diagnosis, as G-CSF may increase the num-
ber and improve the function of circulating neutrophils,

andG-CSFmay improve the symptoms of Crohn-like inflam-
matory bowel disease in individuals with GSD-1b [30, 31].

Corn starch and other carbohydrates are the primary
treatment for G6Pase deficiency [32]. It is also necessary
to normalize other physiological parameters during disease
state of G6Pase deficiency. Allopurinol and angiotensin-
converting enzyme (ACE) inhibitors are used as supple-
mentary drug to lower the uric acid and microalbuminuria
[20]. Adjunct therapy during G6Pase deficiency includes
lipid lowering drugs and potassium citrate [26, 33, 34]. Liver
transplantation in the patient with GSD-1a can be performed
if dietary therapy becomes unresponsive to hepatocellular
adenoma and tumors. Bone marrow transplantation can be
undertaken for the patients with GSD-1b related myeloid
deficiencies [26, 34–39].

2.2. Fructose-1,6-bisphosphatase (FBPase) Deficiency. FBPase
is an unique enzyme in the gluconeogenetic pathway, reg-
ulated via alteration of the active (R) and inactive (T)
conformational isomeric states [11, 40], which catalyzes the
magnesium dependent reversible production of fructose-
1,6-bisphosphate from fructose-6-phosphate and inorganic
phosphate [41]. The molecular weight of human FBPase
is 36.7 KDa and consists of four identical subunits of one
substrate and one allosteric site. FBPase activity is regulated
by fructose-2,6-bisphosphate (binds to substrate site) and
adenosine monophosphate (binds to allosteric site). This
enzyme is encoded by the FBP1 gene in liver and kidney at
9q22.2 and q22.3 chromosomal site [42].

FBPase deficiency is a metabolic recessive disorder in the
liver that is characterized by the life-threatening episodes
of hyperventilation, hypoglycemia, apnoea, lactic acidosis,
and ketosis [43, 44]. Kikawa, for the first time, identified
the mutations of FBPase in ten patients of eight unrelated
families, suggesting that FBP1 gene mutation is responsible
for FBPase deficiency. To date, several different mutations
have been published on individuals with FBPase deficiency.
Among them, 960/961insG, G164S, A177D, and E30X were
reported in Japanese unrelated families. Recently, two new
FBP1 gene mutations, F194S and P284R, were identified in
a Japanese female patient with FBPase deficiency. p.G260R,
c.778G>A, and p.Y216X are the newly identified mutations
in Swedish patients [43, 45]. Generally, the mutations are
widespread throughout the FBP1 gene, and each mutation
was found in one case or family, with an exception: an inser-
tion of guanine at position 960 that has been found in several
patients with different ethnic backgrounds [46]. FBP1 gene
was downregulated in Ras-mediated transformation and in
gastric carcinogenesis and NF-kappa-B is involved in initia-
tion of FBP1 gene downregulation (Warburg effect) [45–49].

The diagnosis of FBPase enzyme deficiency was deter-
mined through spectrophotometric and load tests (radio-
chemical) [50, 51] in liver, kidney [52], and jejunum [32].
Calcitriol stimulated FBP1 gene expression is similar to
expression of vitamin D receptor [53]. The measurement of
FBPase deficiency is observed in leucocytes [54, 55]. Later,
similar activity is determined in monocytes where stimu-
lation with calcitriol resulted in four- to sixfold enhance-
ment of activity. Further immunoblotting technique revealed
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the presence of enzymes in monocytes but not in lympho-
cytes [56]. Moreover, both clinical symptoms and mutation
analysis are the common methods for FBPase activity. In
addition, activity assessment of liver tissue is generally used
for a reliable diagnosis [49].

Glucose (10–12mg/kg/minute, newborns) and bicarbon-
ate (200mmol/24 h) are given to control hypoglycemia and
acidosis. Starch and gastric drip are frequently given during
treatment but not sucrose, sorbitol, fructose, fat (20–25%),
and protein (10%) [57].

Enhancement of FBPase activity during type 2 diabetes is
the primary role as this enzyme promotes gluconeogenesis
[58]. However, antidiabetics do not reduce gluconeogene-
sis, and therefore inhibition of FBPase activity is required
separately [58–60]. The uses of selective FBPase inhibitors
(adenosine monophosphate) and structure guided design
strategy are the important parameters for FBPase activity.
In light of the same, quite a few FBPase inhibitors are in
their different stages of ongoing clinical trials (CS-917 and
MB07803) [58].

2.3. Phosphoenolpyruvate Carboxykinase (PEPCK) Deficiency.
PEPCK, an essential marker for gluconeogenesis, catalyzes
the conversion of phosphoenolpyruvate to oxaloacetate.
There are different isoforms of PEPCK, that is, PEPCK1
(cytosolic) and PEPCK2 (mitochondrial) [61]. PEPCK1 is
localized on chromosome 20q13.31 and encodes a 622-
amino acid polypeptide with 91% sequence similarity to that
of the rat, whereas PEPCK2 is localized on chromosome
14q11.2 and encodes a 640-amino acid polypeptide with 78%
sequence identity to that of the human PEPCK1 [61, 62].
PEPCK1 is regulated by the mitochondrial GTP-dependent
pathways, including hormones, substrate supply, and purine
nucleotides.

Although this enzyme helps in gluconeogenesis, it has
an important role in glyceroneogenesis where it helps in the
synthesis of glyceride-glycerol from glucose or glycerol in
adipose tissue and liver [63, 64]. It plays another role in
citric acid cycle and helps in the entry of carbon skeletons
to amino acids [65]. Recently, it has been reported that
the role of this enzyme in mammary gland epithelial cells
(HC11 cells) is derived from COMMA-D epithelial cells and
isolated from the mammary gland of pregnant BALB/c mice
[66, 67]. Apart from this, PEPCK2 is known for its ability to
fix carbon dioxide by converting pyruvate into oxaloacetic
acid (Wood-Werkman pathway) [68]. Moreover, PEPCK2
is principally involved in gluconeogenesis, providing the
cytosolic NADH through its conversion to pyruvate from
lactic acid. This enzyme deficiency is an autosomal recessive
disorder whose phenotype is not expressed clearly. Lactic
acidosis and hypoglycemia are the primary symptoms for
PEPCKdeficiency. Reye syndrome develops due to inhibition
of gluconeogenesis which, in turn, is due to PEPCK enzyme
deficiency [69].

The specific symptoms of PEPCK deficiency are asso-
ciated with lactic acidosis, hypoglycaemia, hepatomegaly,
glucagon insensitivity, failure to thrive, Fanconi syndrome,
developmental delay, hypotonia, and massive fat deposition
in liver and kidneys [70].

Treatment of PEPCK deficiency includes the mainte-
nance therapy similar to FBPase deficiency to treat acute
attacks (glucose and bicarbonate infusions). There is no
specific treatment other than maintaining normoglycaemia
and correcting metabolic disorders.

2.4. Pyruvate Dehydrogenase Complex (PDHC) Deficiency.
PDHC is critically involved in the conversion of pyruvate
to acetyl-coenzyme A. The complex is composed of three
different enzymes which are pyruvate decarboxylase (E1),
dihydrolipoyl transacetylase (E2), and dihydrolipoyl dehy-
drogenase (E3).This complex requires five coenzymes for the
reaction, three prosthetic groups (thiamine pyrophosphate,
FAD, and lipoic acid), and two other carriers (coenzyme
A and NAD) [71]. PDHC deficiency is considered one of
the most common genetic as well as neurodegenerative
disorders generally associated with abnormal mitochondrial
metabolism. It is an extremely heterogeneous condition, also
one of the X-linked diseases in which heterozygous female
exhibits severe symptoms [72–75].

Around 200 cases of PDHCdeficiency were reported pre-
viously where mutation at E1𝛼 subunit of Xp22 chromosome
has occurred. 80 different mutated genes from E1𝛼 subunit
had been identified which are responsible for deficiency [76–
78]. Few cases of deficiency were not clearly understood and
it is assumed that this happened due to alteration of recessive
genes (1 : 50000 cases in males) [79].

Clinical spectrum of PDHC deficiency is broad and is
divided into neurological as well as metabolic manifesta-
tions. Neurological presentation includes hypotonia, spas-
ticity, dysplasia of the dentate nuclei, pachygyria, mental
retardation, and Leigh syndrome. The metabolic manifes-
tation of this enzyme deficiency occurs at neonatal period
due to lactic acidosis. Maple syrup urine disease (MSUD)
and energy metabolism disorder occurred during PDHC
deficiency due to increased levels of plasma pyruvate, lactate,
and 𝛼-ketoglutarate [80]. Sometimes, neonatal lactic acidosis
along with respiratory disturbances was observed during
this enzyme deficiency state [81]. Mutations in pyruvate
dehydrogenase phosphatase gene have also been recently
identified [79, 82].

Diagnosis is based upon the laboratory measurements
of lactate and pyruvate in blood and cerebrospinal fluid
(CSF). High blood lactate and pyruvate levels in blood and
cerebrospinal fluid with or without lactic acidemia suggest
the deficiency of PDHC. Furthermore, lactate-to-pyruvate
ratio is diagnostically useful to differentiate PDHC deficiency
fromother forms of congenital lactic acidosis at higher lactate
levels (>5mmol/L). A low L : P ratio is observed in inherited
disorders of PDHC deficiency. As in the case of PDHC
deficiency, the mutation arises from the germ cells of one of
the parents and the majority of children die before they reach
their adulthood; the prenatal diagnosis is extremely useful for
diagnosing patients before they are born so that treatment
can be initiated immediately after birth. The identification of
mutated gene deficit and genetic analysis in pregnancies is
one of the most reliable methods for prenatal diagnosis [82].
In prenatal diagnosis, cultured chorionic villus cells are the
most reliable to measure enzymatic activity. In male foetus,
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it is easy to diagnose with confidence, but in female foetus, it
becomes difficult due to extreme skewing of X-chromosome
inactivation.

Treatment includes the ketogenic diet, an important
rational strategy for PDHCdeficiency, but it does not improve
the neurological symptoms and structural damage in the
brain. Thiamine at variable doses and dichloroacetate at
50mg/kg were found to be effective in some patients for
potential treatment of PDHC deficiency and around 40 cases
have been treated with the same. The combination of DCA
and thiamine can be given in chronic cases but thiamine
with ketogenic diet should be tried in each and every patient
[72, 82].

2.5. Succinate Dehydrogenase (SDH) Deficiency. SDH (succi-
nate ubiquinone oxidoreductase) is composed of heterote-
trameric protein with SDHA and SDHB subunits, which
bulge into mitochondria and coupled with inner membrane
by SDHC and SDHD subunits (ubiquinone attachment site).
All these subunits together are called complex II, which helps
in Krebs cycle [83]. The four subunits of SDH are encoded
by four nuclear genes located on chromosomes 1p35-p36.1,
5p15, 1q21, and 11q23 [84, 85]. Leigh’s syndrome, also known
as subacute necrotising encephalomyelopathy (SNEM), is
a neurodegenerative disorder and is associated with SDH
deficiency due to mutation [86].

PGL4 syndrome (pheochromocytoma/paraganglioma
syndrome type 4) is characterized by gastrointestinal stromal
tumors and renal tumors and are usually classified as
carcinoma. PGL4 syndrome is caused by SDHB deficiency
which is due to the missense mutation. Moreover, hereditary
paraganglioma and pheochromocytoma is the main disease
state for SDH deficiency which occurs due to mutation
of SDHB, SDHC or SDHD subunits [87, 88]. The similar
diseases also occur due to mutation of SDHA and SDH
subunits assembly factor 2 [89, 90]. Various disorders such
as Leigh syndrome, progressive myopathy, ophthalmoplegia,
optic atrophy, and ataxia are the main clinical manifestations
during SDH deficiency [91, 92]. Treatment of this enzyme
deficiency is symptomatic.

2.6. Fumarase or Fumarate Hydratase (FH) Deficiency. FH
catalyzes the conversion of fumarate to malate which is
responsible for autosomal recessive disorder in the Krebs
cycle.There are two types of fumarase isoenzymes, present in
cytosol andmitochondria.Mitochondrial fumarate hydratase
is responsible for catalytic reversible conversion of fumarate
to malate during citric acid cycle whereas cytosolic fumarase
is involved in fumarate metabolism during urea cycle
[93].

The mutant alleles of the FH gene are located on human
chromosome 1 at position 1q42.1. [94–96]. However, genetic
analysis revealed that mutation occurs at 435insK chromo-
some for several patients (GenBank U59309) whereas the
other mutations seemed to be private mutations [97–100].
The FH gene is similar to tumor suppressor gene, related to
renal cell cancer and hereditary leiomyomatosis [101, 102].

Fumaric aciduria occurs during FH deficiency, charac-
terized by neurological impairment, encephalopathy, and

seizures, which causes death in childhood [86]. Neuropatho-
logical changes include choroid plexus cysts, polymicrogyria,
and hypomyelinationwhich occurs at whitematter of brain in
old ages [97, 103]. FH enzyme concentration is measured in
blood leukocytes, liver, and skin fibroblasts during deficiency
state (via coupling reaction with malate dehydrogenase) [86,
101]. Unfortunately, to date, there is no specific treatment yet
to be employed effectively.

2.7. Glucose-6-phosphate Dehydrogenase (G6PD) Deficiency.
G6PD works in pentose phosphate (PPP) pathway and
helps in the reduction of nicotinamide adenine dinucleotide
phosphate (NADPH). G6PD serves as antioxidant enzyme
where it donates one electron to oxidised glutathione (GSSG)
which converts into reduced glutathione (GSH) [80, 104].The
deficiency syndrome also relates toX-linked hereditary disor-
der [104–107]. G6PD deficiency occurs everywhere due to de
novo mutations [108]. There are 160 different mutated genes,
which is responsible for G6PD deficiency. The gene involved
in the disease is located on Xq28, containing 13 exons, and
encoded by a protein with 515 amino acids. A G6PD gene
mutation distribution rate differs from one geographic area
to another [104, 109]. G6PD A-202(G→A)/376(A→G) is the
most widespreadmutation in the African continent. A G6PD
gene mutation called “Mediterranean” has also frequently
been distributed from Mediterranean and Middle Eastern
countries to the Indian subcontinent. It is the most common
mutation among patients from the northern provinces of
Iran. Apart from these, Chatham and Cosenza, the two other
common G6PD gene mutations, have the highest frequency
rates in those areas [110–112].

The patients with G6PD deficiency suffer from cyanosis,
headache, fatigue, tachycardia, dyspnoea, lethargy, lumbar/
substernal pain, abdominal pain, splenomegaly, hemoglobin-
uria, and/or scleral icterus.Moreover, the broken down prod-
ucts of hemoglobin may accumulate in the blood, causing
jaundice, and are excreted in urine, causing dark brown
discoloration [80].

2.8. Ribose-5-phosphate Isomerase (RPI) Deficiency. RPI is
an enzyme of PPP pathway, which catalyzes the conver-
sion between ribulose-5-phosphate (Ru5P) and ribose-5-
phosphate (R5P). With a much lower number of diagnosed
patients, RPI deficiency is currently the rarest disease in the
world [113, 114]. During RPI deficiency, the human is attacked
by epilepsy, followed by weakening of speech, vision, hand
coordination, and walking [114].

It contains 2p11.2 gene having 9 exons and 311 amino
acids. Deficiency of this enzyme is found to be caused by
a combination of two mutations. The first is a dele-
tion (c.540delG) and the second is a missense mutation
(c.182C>T) of 2p11.2 gene [113].

The disease is clinically specified by leukoencephalopathy
and mild peripheral polyneuropathy. Other neurological
parameters like prominent cerebellar ataxia, nystagmus,
bilateral optic atrophy, and spasticity were also observed
during this enzyme deficiency [113].

The levels of D-xylulose, ribose, ribitol, and arabitol are
increased in urine during deficiency state and therefore the
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diagnosis of this enzyme deficiency is performed by the
concentration of sugars and polyols in the urine sample.
Diagnosis may also be undertaken through the enzymatic
assay in fibroblasts and sequence analysis of R5P gene. There
is no specific treatment available for such deficiency [80].

2.9. Transaldolase (TALDO) Deficiency. TALDO is a nonox-
idative enzyme of pentose phosphate pathway, which is
involved in making a correlation between PPP and glycolysis
pathways. Transaldolase (TALDO) deficiency is a newly
recognized metabolic disease, which has been reported so
far in 2 patients presenting with liver failure and cirrhosis.
Deficiency of this enzyme shows elevation of polyols and
seven-carbon sugars (erythritol, arabitol, and ribitol) in the
body [113].

TALDO gene is composed of 11p15.5-p15.4 chromo-
some with another pseudogene at 1p34.1-p33 chromosome.
TALDO deficiency is caused by mutation in TALDO 1
gene in the form of c.575C>T (p.Arg192Cys), c.574G>A
(p.Arg192His), and c.512-514delCCT [115, 116].

The common clinical symptoms include bleeding prob-
lems, hepatosplenomegaly, enlarged clitoris, liver cirrhosis,
thrombocytopenia, elevated bile acid with normal bilirubin,
andmildly prolonged prothrombin time during deficiency of
TALDO. In addition, the patient may suffer from respiratory
failure, progressive myocardial hypertrophy, bradycardia,
severe lactic acidosis, and liver failure [117–119].

The deficiency of TALDO enzyme is diagnosed by ele-
vated concentrations of ribitol, arabitol, and erythritol in
urine sample. The elevated concentrations of these markers
are more prominent in neonatal stage and older patients
[118, 119]. There is no specific treatment available for TALDO
deficiency. Liver transplantation is an alternative approach for
liver cirrhosis which occurred during this enzyme deficiency
[117, 118].

2.10. N-Acetylglutamate Synthase (NAGS) Deficiency. NAGS
is present in the small intestine and liver which acts as an
important enzyme to regulate ureagenesis [120–122]. In urea
cycle, N-acetylglutamate (NAG) is required as the allosteric
activator of carbamylphosphate synthetase, a rate limiting
enzyme of the urea cycle. NAGS catalyzes the conversion of
glutamate to NAG by combining with Acetyl-CoA. This is
why the deficiency inNAGS leads to hyperammonemia [123].

NAGS deficiency is the rarest autosomal, recessive, inher-
ited metabolic disorder, which is characterized by hyperam-
monemia [120, 121, 124, 125]. NAGS deficiency is clinically
characterized by seizures, poor feeding, hyperammonemia,
coma, and chronic headaches [123, 124]. The biochemical
estimation of all intermediates except elevated plasma ammo-
nia and glutamine shows normal results. Moreover, urinary
orotic acid level is not elevated during deficiency of this
enzyme [126, 127]. However, diagnosis can be achieved by
hepatic enzymatic studies [127] but in some cases it is not
reliable [128, 129].Therefore, accurate diagnosis is performed
by cloning of the NAGS gene [127]. The gene is located on
chromosome 17q21.31 consisting of 7 exons and 6 introns.
Mutations in the NAGS gene include 15 missense, 1 nonsense,
4 frame-shift, and 2 splice-site mutations [130].

NAGS deficiency is the only inherited urea cycle disorder
that can be specifically and effectively treated by a drug N-
carbamylglutamate (NCG) which appears to be beneficial for
the treatment of hyperammonemic conditions and increases
the rate of ureagenesis [131].

During deficiency of this enzyme, arginine supplement,
sodiumphenylacetate, sodiumbenzoate, and sodiumphenyl-
butyrate are generally given to scavenge the excess ammonia
[132].

3. Conclusion

Contribution of mutational approach to detection of real
cause associated with metabolic enzymes deficiency has
allowed the design of “tailor-made” therapeutic strategies to
alleviate most of the metabolic diseases.The original cause of
mostmetabolic enzymedisorders is an IEM, particularly gene
mutations. However, there is a significant level of tolerance in
the system. For example, a mutation in one enzyme does not
mean that the individual will suffer from a disease because
a number of different enzymes may compete to modify the
same metabolic step. Unless a critical enzyme is disabled,
disease will not arise. To recognize a distinct and well-
defined reason of metabolic disorder, therefore, even now
remains a challenge. While the field of metabolism related
research continues to grow and expand, we have gainedmuch
knowledge and insight into the impact of gene mutation
as a causal factor of metabolic disorders and potential new
techniques to be employed in the future. These innovative
insights will be an important review from which future
research may continue to grow and expand.
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